Effect of Discharge and Pressure on the Performance of Crossflow Turbine Simulation System
DOI:
https://doi.org/10.24036/ijimce.v1i3.41Keywords:
Energy, turbine, pump, current, voltage, power.Abstract
The demand for electrical energy is increasing. Electricity supply in Indonesia is not yet evenly distributed. Indonesia's electrification ratio is only 99.63%. Generally, areas that have not been electrified are rural areas. It is necessary to utilize water energy sources for power generation. This research was conducted with a simulation tool from a micro hydro power plant with a crossflow turbine. The use of this turbine is because it is easy in terms of cost and manufacturing. The research was given an input source from a pump with a double pump system and a single pump system. Each system is given a variation of 100%, 75% and 50% openings. Data collection time is carried out for 90 minutes on each system and opening. From the research results obtained current, voltage, and output power. In the double pump system with 100% opening is relatively greater than 75% and 50% opening in the same system and in the single pump system. The maximum output current obtained in this study is 0.09 amperes with a double pump system opening 100% and the minimum output value is 0.02 amperes in a single pump system opening 50%. The maximum output power obtained in this study was 1.81 watts with a 100% opening dual pump system and a minimum output value of 0.32 watts in a 50% opening single pump system. The maximum output voltage obtained was 21.5 volts at 50% opening of the dual pump system, and the minimum output voltage was 15.8 volts at 50% opening of the single pump system. A large discharge will provide a large current, voltage and power output because it is able to crush the turbine with a relatively large speed. Discharge will affect the pressure and flow that occurs in the pipe, because the amount of discharge will be linear with the amount of pressure. The use of double pumps will get high efficiency with a large discharge. The greatest efficiency occurs when the double pump system.
Downloads
References
P. A. Michael and C. P. Jawahar, “Design of 15 kW Micro Hydro Power Plant for Rural Electrification at Valara,” Energy Procedia, vol. 117, pp. 163–171, Jun. 2017, doi: 10.1016/J.EGYPRO.2017.05.119.
K. D. Anisa, “Study Comparative Hasil Analisis Numerik dan Eksperimental Pembangkit Listrik Tenaga Mikro Hidro di Nagari Koto Hilalang Kabupaten Solok,” 2022, Accessed: Jul. 23, 2024. [Online]. Available: http://repository.unp.ac.id/43898/
P. Purwantono, S. Syahrul, and J. Adri, “Pengaruh Perubahan Debit Aliran Terhadap Putaran Turbin Banki dan Kaplan,” INVOTEK J. Inov. Vokasional dan Teknol., vol. 18, no. 1, pp. 13–18, 2018, Accessed: Jul. 23, 2024. [Online]. Available: http://invotek.ppj.unp.ac.id/index.php/invotek/article/view/173/45
P. Temel, E. Kentel, and E. Alp, “Development of a site selection methodology for run-of-river hydroelectric power plants within the water-energy-ecosystem nexus,” Sci. Total Environ., vol. 856, p. 159152, Jan. 2023, doi: 10.1016/J.SCITOTENV.2022.159152.
C. Soares, “Competition for the microturbine industry,” Microturbines, pp. 179–202, Jan. 2007, doi: 10.1016/B978-075068469-9/50014-2.
T. Mohamed, “Hydropower,” Distrib. Renew. Energies Off-Grid Communities Empower. a Sustain. Compet. Secur. Twenty-First Century, pp. 213–230, Jan. 2021, doi: 10.1016/B978-0-12-821605-7.00026-X.
A. Nurhuda, “PERANCANGAN TURBIN CROSSFLOW UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO BUKIT BIOBIO,” J. Pendidik. Tek. Mesin, vol. 1, no. 2, Jul. 2016, Accessed: Jul. 31, 2024. [Online]. Available: https://ejournal.unp.ac.id/students/index.php/ptmesin/article/view/2441
B. A. Nasir, “Design Considerations of Micro-hydro-electric Power Plant,” Energy Procedia, vol. 50, pp. 19–29, Jan. 2014, doi: 10.1016/J.EGYPRO.2014.06.003.
Leni, D., & Kesuma, D. S. (2023). Analisis Kinerja Turbin Hidrokinetik Dengan Selubung Diffuser Pada Kondisi Yaw Misalignment Berdasarkan Variasi Kecepatan Aliran Air. Jurnal Rekayasa Material, Manufaktur dan Energi, 6(2), 203-210.
M. M. Shamsuddeen, M. A. Shahzer, M. S. Roh, and J. H. Kim, “Feasibility study of ultra-low-head hydro turbines for energy extraction from shallow waterways,” Heliyon, vol. 10, no. 15, p. e35008, Aug. 2024, doi: 10.1016/J.HELIYON.2024.E35008.
Sulaeman and R. A. Jaya, “Perencanaan pembangunan sistem pembangkit listrik tenaga mikro hidro (pltmh) di kinali pasaman barat,” J. Tek. Mesin, vol. 4, no. 2, pp. 90–96, 2014.
Y. R. Pasalli and A. B. Rehiara, “Design Planning of Micro-hydro Power Plant in Hink River,” Procedia Environ. Sci., vol. 20, pp. 55–63, Jan. 2014, doi: 10.1016/J.PROENV.2014.03.009.
L. Darwito, H. Nurdin, P. Purwantono, and A. Kurniawan, “Analysis of Power and Efficiency of Cross-flow Turbine Due to Changes in Runner Rotation,” Motiv. J. Mech. Electr. Ind. Eng., vol. 4, no. 1, pp. 9–16, Feb. 2022, doi: 10.46574/MOTIVECTION.V4I1.108.
R. Lapisa et al., “Cross-Flow Turbine Design of Micro hydro Power Generator for Rural Energy-Independent Area,” Motiv. J. Mech. Electr. Ind. Eng., vol. 5, no. 2, pp. 233–244, Mar. 2023, doi: 10.46574/MOTIVECTION.V5I2.163.
R. S. Anand, C. P. Jawahar, E. Bellos, and A. Malmquist, “A comprehensive review on Crossflow turbine for hydropower applications,” Ocean Eng., vol. 240, p. 110015, Nov. 2021, doi: 10.1016/J.OCEANENG.2021.110015.
E. Quaranta, J. P. Perrier, and R. Revelli, “Optimal design process of crossflow Banki turbines: Literature review and novel expeditious equations,” Ocean Eng., vol. 257, p. 111582, Aug. 2022, doi: 10.1016/J.OCEANENG.2022.111582.
R. Dafit, Kaidir, and Mulyanef, “Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Berkapasitas 4,88kW Di Koto Anau Kabupaten Solok,” J. Ris. Ind., pp. 1–13, 2014.
K. Arwizet, D. Leni, D. Aprilman, A. Adriansyah, and N. Nasrullah, “Performance Analysis of Hydrokinetic Turbine Using Shroud Ratio Comparison under Yaw Misalignment Condition,” INVOTEK J. Inov. Vokasional dan Teknol., vol. 23, no. 1, pp. 21–32, Aug. 2023, doi: 10.24036/INVOTEK.V23I1.1091.
Ujiburrahman, R. Soenoko, and M. A. Choiron, “Pengaruh Variasi Lebar Sudu Mangkok terhadap Kinerja Turbin Kinetik Poros Vertikal,” J. Progr. Stud. Tek. Mesin UM Metro, vol. 8, no. 1, pp. 79–87, 2019, [Online]. Available: http://ojs.ummetro.ac.id/index.php/turbo
M. Tirono, “PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL,” J. NeutrinoJurnal Fis. dan Apl., vol. 0, no. 0, May 2012, doi: 10.18860/NEU.V0I0.1939.
M. Mafruddin and D. Irawan, “PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR,” Turbo J. Progr. Stud. Tek. Mesin, vol. 3, no. 2, Dec. 2014, doi: 10.24127/TRB.V3I2.12.
C. Join, G. Robert, and M. Fliess, “Model-Free Based Water Level Control for Hydroelectric Power Plants,” IFAC Proc. Vol., vol. 43, no. 1, pp. 134–139, Jan. 2010, doi: 10.3182/20100329-3-PT-3006.00026.
R. B. Astro, H. Doa, and H. Hendro, “FISIKA KONTEKSTUAL PEMBANGKIT LISTRIK TENAGA MIKROHIDRO,” ORBITA J. Pendidik. dan Ilmu Fis., vol. 6, no. 1, pp. 142–149, May 2020, doi: 10.31764/ORBITA.V6I1.1858.
S. Arikunto, Prosedur Penelitian Suatu Pendekatan Praktek, Revisi 4. Jakarta: Rineka Cipta, 2014.
D. L. Sihaloho, “Rancang Bangun Alat Uji Model Sistem Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Menggunakan Turbin Aliran Silang,” 2017.
Saputra, A., Kurniawan, A., Fernanda, Y., Karudin, A., & Ahmed, S. (2024). Comparative Analysis of Energy Efficiency Measurement in Building with Manual Calculation and RETScreen Expert. IJIMCE: International Journal of Innovation in Mechanical Construction and Energy, 1(2), 52-63.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rahmat Afdhol, Arwizet Karudin, Remon Lapisa, Andre Kurniawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.